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Figure 1: Overview of Barriers to Visualization Literacy. An overview of barriers at the various stages of reading a data 
visualization. The leftmost panel delineates various visualization tasks. The central panel outlines the three primary barriers 
faced during interpretation: translation, encoding, and decoding. Barriers can either be conceptual, i.e., resulting from a faw in 
understanding, or operational. i.e., resulting from a mistake in reading a value in the visualization or term in the question. 
Translation barriers are those that occur when extracting the task and target of a question. Encoding barriers are those that 
result from a misunderstanding of the visual encodings in the chart. Decoding barriers capture the inability to properly extract 
a data value from the chart. The rightmost panel showcases the potential outcomes: a correct answer, an incorrect answer, or 
no answer. 
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provided us with 1774 task completions. We augmented the stan-
dard VLAT test to capture quantitative and qualitative data on 
participants’ errors. We collected participant sketches and open-
ended text about their analysis approach, providing insight into 
users’ mental models and rationale. 

Our fndings reveal that individuals who incorrectly answer visu-
alization literacy questions often misread visual channels, confound 
chart labels with data values, or struggle to translate data-driven 
questions into visual queries. Recognizing and bridging visualiza-
tion literacy gaps not only ensures inclusivity but also enhances 
the overall efectiveness of visual communication in our society. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in visual-
ization; Visualization theory, concepts and paradigms. 
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1 INTRODUCTION 
In the age of Instagram, infographics, and interactive dashboards, 
visual data permeates our daily lives. Every swipe on our smart-
phones, every website we visit, all resonate with visual cues de-
signed to capture attention and convey messages. This omnipres-
ence of visual stimuli in our digital age accentuates the importance 
of visual literacy—the ability to decode, interpret, and make sense of 
visual information [4]. Visualization literacy, in particular, describes 
a person’s ability to understand data presented in graphical ele-
ments, such as charts, graphs, and maps. Just as traditional literacy 
paved the way for success in the text-dominant eras of the past, 
visualization literacy is the key to unlocking the potential of our 
increasingly visual-centric world. 

However, not all individuals sail smoothly on this sea of visuals. 
Just as with textual literacy, gaps exist, and these disparities in 
visualization literacy can lead to signifcant misunderstandings and 
misinterpretations of data. Understanding the nature and depth of 
these gaps is not just a pedagogical concern but also a social one. 
It touches upon the very essence of how information is received, 
processed, and acted upon by diverse sections of society. 

The task of measuring and assessing visual literacy, especially 
in pedagogical contexts, has garnered heightened interest over the 
years [4, 22]. More recently, tests for evaluating an individual’s 
visualization literacy have been developed, such as the VLAT [26] 
or Mini-VLAT [28]. These tests use a multitude of diferent vi-
sualization types and questions to arrive at a numerical score of 
visualization literacy for the test taker. 

While extensive research has been dedicated to the develop-
ment and assessment of visualization literacy tests [15, 19, 26, 28], 
these tests do not inherently ofer insights into the root causes 
of visualization illiteracy. Therefore, we posit that we have to go 

beyond mere testing to identify strategies for enhancing visual-
ization literacy. It is imperative to frst understand the underlying 
misconceptions users harbor when interpreting visualizations. 

In this paper, we investigate some of the barriers to visualization 
literacy and look at the challenges faced by those who grapple 
with visual representations. We leverage existing tools that mea-
sure viewers’ ability to perform visual tasks with basic charts (the 
VLAT) and focus on understanding the mental gaps and concep-
tual misunderstandings that can occur. We do this through a large 
crowdsourced study that captures both quantitative and rich quali-
tative data on participants who take the VLAT. With this, we aim 
to shed light on the specifc hurdles, nuances, and potential pitfalls 
that individuals encounter when they misread a visualization. From 
our research, we introduce a classifcation of challenges that view-
ers can encounter when making sense of a visualization. We classify 
obstacles into a) difculties in translating a question to a visual 
query (translation barriers), b) difculties in understanding the lay-
out and visual encoding of a visualization (encoding barriers), and 
c) mistakes in reading out and decoding values of a visualization 
(decoding barriers). We elucidate each barrier with examples from 
our study. 

In this work, we make two main contributions: 
• A mixed-methods empirical study that investigates the ra-
tionale behind mistakes in the Visualization Literacy Assess-
ment Test. 

• A classifcation of the diferent barriers in interpreting data 
visualizations. 

2 RELATED WORK 
Visualization literacy has been at the forefront of recent academic 
investigations, with scholars striving to understand how individuals 
interpret and derive meaning from visual data representations. In 
this section, we explore the related work in the feld of visualization 
literacy, including defnitions, assessment methods, and conceptual 
barriers. 

2.1 Visualization literacy defnition and 
measurement 

The concept of visualization literacy has its roots in the early 20th 
century. The broader term visual literacy was popularized in the 
1960s and 1970s as the ability to understand, interpret, and produce 
visual messages [11, 16, 31, 33, 35]. More specifc to the domain 
of data and information visualization, the term visualization lit-
eracy evolved several years later, as the ability to interpret (read) 
and create (write) data visualizations efectively. More specifcally, 
Börner et al. defned visualization literacy as: "The ability to make 
meaning from and interpret patterns, trends, and correlations in 
visual representations of data [8]. 

Ofering a parallel perspective, Lee et al. describe it as "the apti-
tude and capability to read, interpret, and glean information from 
data visualizations." [25]. In this study, we adopt Lee et al.’s defni-
tion, as it aligns closely with the skills evaluated by the Visualization 
Literacy Assessment Test (VLAT) we utilized. 

In a distinct approach to gauge visualization literacy, Boy et al. 
[10] utilized the response theory to develop measurement items. 
Their study identifed six key tasks for visualization comprehension: 
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determining minimum and maximum values, discerning variation, 
pinpointing intersections, computing averages, and making com-
parisons. Their evaluation tools incorporated line charts, bar charts, 
and scatterplots. 

Building on the foundational work of Boy et al., Lee et al., and 
Borner et al. in defning visualization literacy, research progres-
sively expanded to develop efective methods of assessing it. To 
this end, Lee et al. [26] introduced the now widely recognized and 
established Visualization Literacy Assessment Test (VLAT), com-
prising 12 data visualizations and 53 multiple-choice items. The 
visualizations include the following: line chart, bar chart, stacked 
bar chart, 100% stacked bar chart, pie chart, histogram, scatterplot, 
bubble chart, area chart, stacked area chart, choropleth map, and 
treemap. The test featured high validity and reliability, but even 
with a limit of 25 seconds per question, the VLAT is approximately 
22 minutes long. This motivated Pandey et al.[28] to develop a short-
ened version of the VLAT with only 12 items instead of 53, which 
is still reliable and strongly correlating with the original VLAT. 
Several other approaches to test visualization literacy have been 
proposed recently[15], often requiring less time than the VLAT test. 
Firat et al. [19] present a survey on visualization literacy and its 
evaluation. In this study, we employ the full VLAT survey by Lee 
et al. to prompt participants to perform visual analytic tasks with 
basic charts. However, our main goal is not to assess or improve 
VLAT scores but to understand the mental models that lead to incor-
rect answers. Therefore, we also collect open-ended responses that 
provide us with qualitative data to better understand participant 
rationale. 

2.2 Understanding Barriers to Visualization 
Literacy 

While much of the literature concentrates on measuring and enhanc-
ing visualization literacy, fewer studies have dissected the specifc 
conceptual obstacles and mental models contributing to limited 
visualization literacy. In their state of the art report on interactive 
visualization literacy, Firat et al. [18] note that the most common 
future research goal identifed in their corpus of papers was ‘an 
improved understanding of barriers to visualization literacy’ 

In one such efort, Grammel et al. [21] studied the behaviors of 
novice users as they created visualizations from a given dataset. 
They identifed several challenges, which they termed "barriers" 
faced during this process. These barriers included high visual com-
plexity, unfamiliar visualization types, difculties understanding 
the semantics of measurements, and readability problems. Although 
these barriers ofer valuable insights, they remain broad and do 
not delve into the specifc aspects of the visualization that pose 
challenges for the viewer. 

In a similar vein, Kwon et al. [13] delved into the difculties, 
or "roadblocks" as they called them, that novice users encounter 
in investigative analysis using the mature visualization tool, Jig-
saw. The roadblocks encountered mostly related to the interactive 
nature of the target tool, such as "Failure to execute appropriate 
interactions" or very high-level abstractions, such as "Failure to 
interpret visualizations". 

In contrast, Börner et al. [8] investigated cognitive barriers to 
visualization literacy with static visualizations of varying levels 
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of complexity. This investigation involved the presentation of a 
range of visualization types within the premises of three science 
museums in the United States, coupled with inquiries directed at 
visitors to gauge their knowledge of the displayed visualizations. 
Through this study, the authors sought to elucidate the cognitive 
boundaries associated with individuals’ capacity to recognize and 
comprehend various forms of data visualizations. The fndings 
showed that individuals possess the capability to comprehend and 
label visualizations only if they have prior familiarity with them. 
In the case of more intricate visualizations, such as graph layouts, 
visitors encountered difculties in deciphering the underlying data 
representations conveyed by the presented visuals. 

With a focus on a specifc chart type, Peebles et al. [29] explored 
how those unfamiliar with parallel-coordinates plots interpret such 
visualizations. They identifed two primary impediments to ac-
curate interpretation: (1) a lack of understanding of coordinate 
systems and (2) visual complications from crossing lines and clutter. 
In contrast to previous studies, the authors highlighted specifc 
design elements that caused confusion. Our work further delves 
into these barriers to visualization literacy, examining potential 
hurdles across a broader array of visualization types. 

Thompson et al. [32] conducted a comprehensive investigation 
by engaging with experts in the felds of visualization literacy and 
information literacy. Their study aimed to discern emerging pat-
terns, obstacles, and prospects that are shaping the landscape of 
visualization literacy in the twenty-frst century. Their particular 
emphasis was on the aptitude to interpret and analyze visual con-
tent, revealing a notable defciency in addressing what is termed 
as "visualization literacy" within the United States’ educational 
framework [3]. Furthermore, Thompson et al. observed discernible 
socioeconomic disparities among students concerning their prof-
ciency in visualization literacy. Meanwhile, in research focused on 
visualization literacy barriers in graph exploration, Alkadi et al. [2] 
investigated challenges faced by users in visualizing networks. A 
key insight from their work was that users frequently faced difcul-
ties when their analyses clashed with pre-existing mental models 
or expectations of how their networks should appear. 

Satkowski et al. [30] showed that individuals with lower visu-
alization literacy might beneft more from adapted visualizations 
(i.e., visualizations that have been modifed to highlight important 
elements) than individuals with high visualization literacy. Simi-
larly, Birchfeld et al. [7] found that feedback mechanisms improve 
graphical perception when reading charts. Finally, Yang et al. [37] 
explored how individuals explain visualizations. However, none 
of these studies specifcally investigated the diferent barriers to 
visualization literacy. 

Our work is closely connected to the research conducted by 
Lee et al. [27]. In their investigation, the authors delved into the 
correlation between visualization literacy and individual factors 
such as numeracy, need for cognition, and cognitive style classifed 
as visualizer-verbalizer. Their fndings revealed a statistically sig-
nifcant positive correlation between numeracy and visualization 
literacy, as well as a positive correlation with the need for cognition. 
Notably, no discernible correlation emerged between the visualizer-
verbalizer cognitive style and visualization literacy. These identifed 
correlations ofer empirical insights into the nuanced barriers that 
individuals encounter in attaining visualization literacy. Moreover, 
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they provide a foundational basis for informing subsequent studies 
and guiding the development of targeted interventions to address 
specifc barriers on an individualized level. Our work focuses less 
on the individual factors that contribute to visualization literacy 
and more on identifying general barriers to visualization literacy. 

Boy et al. [9] delineated four constituent sub-costs within Wijk’s 
framework of perception and exploration costs (Ce) [36]: 1) literacy 
cost, 2) context-interpretation cost, 3) perceived interactivity cost, 
and 4) initial incentive for exploration cost. Cost in the presented 
framework can also be seen as a barrier. If a certain individual 
threshold is reached, the cost is too high in comparison to the ben-
efts, manifesting a barrier for the individual visualization reader. 
The frst cost characterizes the challenge encountered by infor-
mation seekers unaccustomed to extracting meaning from visual-
izations. The second cost pertains to the cognitive efort required 
to contextualize information within a visualization, encompass-
ing the interpretation of titles, labels, annotations, and other ele-
ments. The perceived interactivity cost (3) elucidates a heightened 
cost/beneft ratio associated with the identifcation of interactive 
features within a graphic. Finally, a defciency in an information 
seeker’s background knowledge concerning the visualized dataset 
or the indicators employed for information representation results 
in a diminished motivation to engage in exploratory data analysis. 
The authors provide a nuanced understanding of the challenges 
inherent in the interaction with visualized data. The presented 
costs ofer valuable insights to inform strategies aimed at better 
understanding potential barriers in visualization literacy. 

Existing literature on barriers to visualization literacy reveals a 
need for a more granular comprehension of conceptual barriers and 
how they manifest across diferent chart types. Our work addresses 
this by collecting in-depth qualitative data on the thought processes 
and reasoning behind them. We examined the obstacles that arise 
at every stage of understanding and extracting information from 
visual representations. Additionally, we delve into specifc miscon-
ceptions and focus on the difculties people face when trying to 
comprehend various types of visualizations. Finally, our study en-
compasses twelve diferent chart types, providing evidence for the 
misconceptions that occur with each type. From this research, we 
have developed a classifcation that outlines the barriers encoun-
tered at each stage of the process of extracting information from 
data visualizations. 

3 CROWDSOURCED STUDY 

3.1 Study Design 
We designed our study to pinpoint the challenges participants faced 
while completing visualization literacy tasks. We employed the 
53 questions from the VLAT survey [26], which encompasses the 
12 visualization types outlined in Figure 3. The chart designs are 
from the more recent version of the VLAT by Pandey et al.[28]. To 
better understand the conceptual faws that can lead viewers to 
incorrectly extract information from a visualization, we made two 
main changes to the way in which VLAT questions were presented 
to the viewer: (1) removing multiple choice options, and (2) adding 
in qualitative data collection. 

To ensure a wide range of responses, we removed the multiple-
choice options from the VLAT questions, except in cases with a 

limited set of possible answers, like specifc US states or a fnite 
set of data categories. When questions sought numerical responses, 
we had participants input an open-ended number. This approach 
not only minimizes guesswork but also sheds light on unique, often 
unconventional, cognitive frameworks. Additionally, we provided 
an option for participants to indicate uncertainty with an "I’m not 
sure" response. 

In our second modifcation to the VLAT questions, we collected 
two types of qualitative data from participants: (1) free-form anno-
tations on the visualizations, and (2) open-ended text that described 
their reasoning during the task. We used the Qualtrics platform to 
conduct the study, which allowed us to implement display logic to 
request sketches and explanations only when participants either 
gave an incorrect answer or chose "I’m not sure", thus minimizing 
the overall cognitive load of taking the survey. 

For qualitative feedback, we displayed the original VLAT ques-
tion next to the participant’s answer and asked them to annotate 
directly on the visualization with their mouse. We further prompted 
them with: "Can you explain your thought process? What elements 
guided your decision? Did you fnd any part confusing?" 

3.2 Pilots and Experiment Planning 
We conducted three pilots, with 30, 60, and 60 participants, respec-
tively, to evaluate tasks, visualization design, and our procedure. 
Initial pilots revealed ambiguity in the design of some of the VLAT 
charts from Pandey et al.[28]. For example, the x-axis labels for 
time-based data did not clarify whether a year label was the start or 
end of the year, creating confusion among participants. Similarly, 
the treemap design, which did not include a box around all cate-
gories, left several participants unclear as to whether they all added 
up to 100%. Since the goal of this study was to pinpoint conceptual 
gaps in viewers’ understanding of the visualization, we wanted 
to minimize the efect of mistakes that resulted from the poor or 
ambiguous design of the visualizations themselves. To this end, we 
updated the design of the charts to make the labeling of the axis 
and the treemap design as clear as possible. These modifcations 
also align with the design of these charts in the original VLAT 
survey[26]. 

Another chart design insight that emerged from the pilots related 
to the labeling of bars in the histogram. The original design of the 
VLAT histogram, as well as most common histograms, labels the 
ranges for each bin at the tick marks on the right and left side of 
the bar (Figure 2, left panel). However, several participants in the 
pilot interpreted the bar as representing the count for a single x 
value, instead of the range between the two boundary values. To 
further investigate this conceptual ambiguity, we created and used 
two designs for the histogram in the fnal study, one where the x 
ticks/labels on the edges of the bar represent the boundary values 
(Figure 2 left panel), and the other where the label is directly under 
the bar and shows the exact range for that bar (e.g 10-20) (Figure 
2 right panel). Participants who saw a histogram were randomly 
assigned one of the two histogram designs, and the analysis of the 
results was done for each histogram separately (Table 2). Results 
show that participants performed better with the updated design, 
which reduced the ambiguity of what data was contained in each 
bar. 
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Design A

Design B

Figure 2: Histogram x-axis labeling strategies. The top panel 
represents the more standard x labeling for histograms, 
where bars sit in between the ticks that denote the range 
of values contained in that bar. The bottom panel shows an 
alternate design, which centrally positions a single label be-
neath each bar to denote its range. Study fndings revealed 
superior participant performance with the bottom design 
compared to the top. 

Data from the pilots also revealed that participants frequently 
mistook the frst and last data points – as opposed to the max 
and min – as the data range in the area chart. To determine if 
the data trend in the chart (with the maximum value at the start 
and minimum one data point shy of the end) played a role in this 
confusion, we devised an alternative area cart that presented a 
markedly diferent data pattern (see inset in the Area chart in 
Figure 3). Participants performed better with the alternative area 
chart in all but the retrieve value task, where the accuracy was the 
same between both datasets. 

Lastly, since we were focused on understanding the rationale 
behind incorrect task completions, the fnal study did not include 
the four questions that all 150 pilot participants answered correctly. 
Specifcally, these tasks were bar chart questions 1, 2, and 3 and 
Choropleth question 3. 

3.3 Participants and Procedure 
We recruited 120 participants for the full study on Prolifc, a crowd-
sourcing platform with a research focus. The participants included 
56 men, 64 women, and 2 non-binary/other. Participant ages were 
between 18 and 76. We also collected participants’ self-reported 
familiarity with data visualizations, which included no familiarity 
(5), beginner (35), moderately knowledgeable (56), relatively skilled 
(25), and expert (1). A complete breakdown of participant demo-
graphic information can be found in our supplementary material. 
Our study used a mixed-subjects design in which each participant 
was randomly assigned to four of the twelve VLAT charts. The 
twelve charts used can be seen in Figure 3. We restricted the num-
ber of charts to 4 to avoid survey fatigue, particularly with the 
added cognitive load of providing sketches and explanations. With 
this design, we ended up with 40 participant entries for each of the 
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12 charts. Since each chart has between 3 and 6 questions in the 
VLAT, we collected a total of 1774 task completions. Of these, 490 
were incorrect (27%) and were accompanied by sketches and expla-
nations. We deployed the study on the Qualtrics survey platform, 
which ensures random distribution amongst conditions. 

The study consisted of three sections: Tutorial, VLAT questions, 
and Demographics. 

The tutorial section at the start of the study introduced partici-
pants to the format of VLAT questions, as well as how to sketch on 
the visualizations and answer the open-ended rationale questions. 
After the tutorial, participants answered the VLAT questions for 
their randomly assigned chart types. All questions included the 
option for participants to respond ’I’m not sure’ or ’Impossible to an-
swer with this visualization’. When participants answered the task 
incorrectly, we elicited the follow-up sketch and open text question. 
The last section collected demographic information, as well as their 
self-assessed experience with visualization and whether they have 
any sort of color blindness. The complete survey is available in the 
supplementary material. 

Based on the completion times of the pilot experiments, each 
participant was paid $4 USD, for an estimated duration of 20 min-
utes, resulting in an hourly rate of about $12 USD. The median time 
of completion after the survey was completed was 25 minutes. All 
participants viewed and agreed to an IRB-approved consent form. 
To be eligible for the study, participants had to use a laptop or desk-
top device with a resolution of at least 1400x850 pixels available 
screen space in the browser. 

4 A CLASSIFICATION OF BARRIERS TO 
VISUALIZATION LITERACY 

The results from the study provided two lenses for understanding 
barriers to visualization literacy for the diferent chart types. The 
qualitative data includes the participant sketches as well as written 
explanations in text. The analysis of this data led to the classifca-
tion of barriers to visualization literacy as shown in Figure 1 and 
is described in detail in this section. The quantitative data, which 
includes accuracy and time, revealed the charts and tasks that par-
ticipants struggled with the most. Analyzing the performance and 
time metrics in light of the barriers identifed from the qualitative 
data provided us with rich insight into the main barriers associated 
with diferent tasks and charts. We present and discuss these results 
in Section 5. 

In this section, we describe how we analyzed the study data to 
produce a categorization of barriers in reading a visualization. We 
delineate the sequential steps that span from reading the question 
to formulating an answer, highlighting key barriers at each juncture. 
Drawing from our survey responses, we present examples of these 
common pitfalls. 

4.1 Methodology 
To shed light on participants’ underlying cognitive barriers and 
mental models, we performed a qualitative analysis of all the sketches 
and open-form text in incorrect task completions. For this, we em-
ployed the open coding method, which involves systematically 
identifying and tagging patterns, themes, or concepts within the 
collected data [14]. This process was done by both the frst and 
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Dataset A

Dataset B

Axis Design A

Axis Design B

Figure 3: Chart Designs. The 12 charts used in the crowdsourced survey: area chart, bar chart, line chart, pie chart, choropleth 
chart, stacked bar chart 100%, scatter plot, treemap, histogram chart, bubble chart, stacked area chart, stacked bar chart. Two 
charts had dual designs, which emerged from fndings in our pilot. The histogram variants had diferent x-axis labeling (see 
inset). The area chart variants each had a diferent data pattern (see inset). Color palettes were chosen to ensure they were 
colorblind-safe. 

second authors of the paper independently, with any discrepan-
cies between them resolved on a case-by-case basis. This method 
ensured a comprehensive and unbiased understanding of how par-
ticipants navigated and decoded the visualizations presented to 
them. The fnal set of codes can be found in the supplementary 
material. 

The output of the coding process by the authors was then or-
ganized into higher-level categories of diferent types of mistakes. 
For example, all the codes that captured a mistake in the process 
of translating the question to a visualization task were grouped 
into a ‘translation’ category. This systematic grouping of codes into 
higher-level groups led to the classifcation of barriers presented in 
Figure 1, which form the main contribution of this work. 

4.2 Classifcation of Barriers 
The process of answering a question with a data visualization can 
be broken down into 5 components, as shown in Figure 1: 

(1) Posing the question 
(2) Translating the question into a visual query, 

(3) Grasping the visualization’s layout and visual encodings, 
(4) Decoding relevant values, and 
(5) Synthesizing an answer. 

Barriers that occur during stages 2, 3, and 4 are classifed as 
translation, encoding, and decoding barriers, respectively. Our study 
design is not well suited to characterize barriers specifc to stages 1 
and 5 since we employ pre-defned tasks (VLAT) which have specifc 
correct answers. Barriers in these stages would be best explored 
in a study with open-ended exploratory tasks. For the three types 
of barriers we characterize in this work, we further distinguish 
between conceptual and operational barriers. Conceptual barriers 
are those that result from a gap in the viewer’s understanding of 
the task or the visual encodings used. For example, if the viewer 
does not know the meaning of a term in the task, or they do not 
understand how a visual variable maps to the underlying data. 
Operational barriers, on the other hand, are those that occur when a 
user misreads the question or elements in the visualization, such as 
data values or color legends. Operational barriers can result from a 
previous conceptual barrier, but can also happen in isolation as a 
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result of inattention. We elaborate further on each type of barrier 
in the subsequent sections. 

4.3 Translation Barriers: From Text to Visual 
Query 

During the translation phase, users interpret the question and dis-
cern what information they need to derive from the visualization. 
Mistakes in this phase can be categorized into two main types: 

• T1: Misunderstands the visual task. 
• T2: Misreads the target or qualifer of the task. 

Errors during translation often cascade to subsequent stages, 
possibly leading to mistakes like decoding the wrong data elements 
(D1) or accessing the incorrect visual channel (D2). An in-depth 
discussion on decoding errors can be found in Section 4.5. 

4.3.1 T1: Misunderstands the task. 
A conceptual barrier emerges when the user fails to understand the 
visualization task requested. Such misunderstandings frequently 
arise when a question uses terminology unfamiliar to the viewer, 
like ‘range’, ‘ratio’, or ‘outlier’. 

In our research, many participants misunderstood the task in 
question. For instance, when asked to determine the "range of cofee 
prices observed between January 2018 and 2019" (ACQ3), many 
mistook ’range’ for ’diference in price between the two dates’. One 
participant explained, "I found the values for the two months, then 
ordered them from frst to last." (See Figure 4a for a visual example). 

4.3.2 T2: Misreads the target or qualifier. 
In contrast to T1, this is an operational barrier, and stems from the 
viewer directing their attention to the wrong target. This might 
manifest as identifying the accurate price for an incorrect category. 
Causes for this misstep can range from hastily reading the ques-
tion to inadvertently focusing on a more visually prominent, yet 
incorrect, target. Survey instances of this error included identifying 
the right month but in the wrong year in a time series, the wrong 
category in a Stacked Bar (Figure 4b), or area chart, or an incorrect 
interval on a histogram. 

4.4 Encoding Barriers: Understanding Marks 
and Channels 

Encoding barriers arise when a viewer struggles to comprehend the 
chart’s visual encodings, including the visual channels, structural 
chart elements, and interpretation of axes and color maps. The 
barriers in this category are all conceptual since they result from 
a misunderstanding of how the data is mapped to visual variables. 
Such errors can fall into one of four categories: 

• E1: Misunderstands the visual encodings 
• E2: Misinterprets the axis or colormap 
• E3: Confounds chart elements with data values 
• E4: Cannot visually estimate a derived value 

Mistakes at this stage can also lead to decoding errors in sub-
sequent steps, such as targeting the wrong data value, or can halt 
the analysis entirely if the viewer cannot comprehend the visual 
encodings. 

4.4.1 E1: Misunderstands the visual encodings. The most crit-
ical of encoding barriers arises when users misinterpret the specifc 
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“I found the values for the two months, then ordered them from first to last.”

What was the range of the price of 
a pound of coffee beans between 
January 2018 and January 2020?

Determine Range

Misunderstands  
the task. 

T1

Reads wrong 
data element.

D1

Wrong AnswerWrong AnswerX

correct answer: 0.68- 0.89 
participant answer: 0.73 - 0.89 

(a) Example of a T1: Misunderstands the task mistake. The partic-
ipant misunderstood what "range’ of the data meant and instead 
read the values only at the start and end dates. This mistake also 
led to D1 mistake, where the participant read of the wrong data 
element in the chart. 

“I subtracted the top and bottom values for the silver bar for Japan”

What percentage of Japan’s 
Olympic medals are Bronze? 

Retrieve Value

Misreads the targetT2

Reads wrong  
data element.

D1

Wrong AnswerX

correct answer:  29.3
participant answer: 20

(b) Example of a T2: Misreads the target/qualifer mistake. The 
participant looked up the silver medals for Japan instead of the 
Bronze as asked in the task. This mistake also cascaded into a 
D1 decoding mistake, where the participant read of the wrong 
data element from the chart. 

Figure 4: Examples of Translation and Decoding Barriers en-
countered by participants in the survey. The sketches portray 
participant annotations, while the pathway on the right of 
each panel denotes the sequence of mistakes made by the 
participant. 

visual cues, such as colors, shapes, or sizes, used to represent data. 
For instance, a viewer might misinterpret the size of a circle in a 
bubble chart as an indicator of one data dimension when it actually 
represents another. A particularly common example of this miscon-
ception is assuming the height of each segment in a stacked bar 
chart refects the absolute value for its respective category. Such 
misunderstandings can arise from unfamiliarity with standard en-
coding practices or when a visualization employs unconventional 
or complex visual mappings. This type of error most often leads to 
one of the decoding errors described in Section 4.5. 
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In our survey, this error was particularly prevalent in stacked 
area charts, stacked bar charts, and 100% stacked bar charts, where 
participants interpreted the height of a stacked bar or area as the 
absolute value for that category. More unique misunderstandings 
of the layout included a belief that histogram bars were cumulative 
(Figure 5a) or that stacked bars represented ranges of prices for that 
item (Figure 5b) 

Retrieve Value

Reads wrong  
data element.

D1

Wrong AnswerX Wrong AnswerX

“I did not sum the bars because the people in the 20-30 bar 
are included in the 30-40 bar.”

How many people have 
traveled a distance between 

20km and 40 km? 

Misunderstands the  
visual encodingsE1

correct answer: 462
participant answer: 230 

(a) Example of a E1: Misunderstands the visual encodings mistake. 
The participant misunderstood what each bar in the histogram 
represents. This also led to a D1 decoding mistake, where they 
read of the values for the wrong bars in the chart. 

Retrieve Value

Wrong AnswerX Wrong AnswerX

Reads wrong value off  
of axis/colormap. 

D3

Misunderstands the  
visual encodingsE1

What is the cost of peanuts 
in room service in Seoul?

“Peanuts cost between 35 and 42 dollars. So the average cost is 38 dollars.” 

correct answer: 6
participant answer: 40 

(b) Example of a E1: Misunderstands the visual encodings mistake. 

that the line connecting data points at two tick marks represents 
values for the individual days that span between the two times-
tamps. 

This particular conceptual error was frequently observed in time 
series charts in our study (Figure 6a). A similar type of mistake 
occurred when interpreting the quantized colormap in the Choro-
pleth map. Viewers found the correct color but did not know how 
to read the value from the quantized colormap legend (Figure 6b). 

There was a lot of change during the month of February so I took the average”

What was the price of a barrel of 
oil in February 2020?

Determine Range

Wrong AnswerX Wrong AnswerX

Misinterprets the  
axis/colormap 

E2

Reads wrong value off  
of axis/colormap. 

D3

correct answer: 50 
participant answer: 40

(a) Example of a E2: Misinterprets the axis or colormap mistake. 
The participant interprets the line connecting the Feb and March 
data points as the days in February. This conceptual faw also led 
to the D3 mistake of reading the wrong value of of the Y axis. 

I could not determine if it was 4-6% or 6-8%”

What was the unemployment rate 
for Indiana (IN) in 2020?

Determine Range

Wrong AnswerX Wrong AnswerX

Misinterprets the  
axis/colormap 

E2

Reads wrong value off  
of axis/colormap. 

D3

correct answer: 6-8% 
participant answer: 4-6% 

The participant interpreted stacked bars as representing the 
min-max range for each category. This conceptual hurdle led to 
a subsequence D3 mistake, where the participant read of the 
wrong value from the axis (the middle of the bar). 

Figure 5: Examples of Encoding (E1) and Decoding (D1/D3) 
Barriers encountered by participants in the survey. The 
sketches portray participant annotations, while the pathway 
on the right of each panel denotes the sequence of mistakes 
made by the participant. 

4.4.2 E2: Misinterprets the axis or colormap. This obstacle 
results from a misinterpretation of axis values, particularly when 
viewers are tasked with deducing values that fall between marked 
intervals. For example, in a time-series chart, a viewer might infer 

(b) Example of a E2: Misinterprets the axis or colormap mistake. 
The participant correctly identifes the color but does not realize 
that the color refers to the range 6- 8%. As a result, they also fall 
victim to the D3 mistake of reading of the wrong value from the 
colormap. 

Figure 6: Examples of Encoding (E2) and Decoding (D3) Bar-
riers encountered by participants in the survey. The sketches 
portray participant annotations, while the pathway on the 
right of each panel denotes the sequence of mistakes made 
by the participant. 

4.4.3 E3: Confounds chart elements with data values. This 
barrier occurs when viewers mistakenly associate structural chart 
elements, such as axis labels, gridlines, or reference elements, with 
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the data being depicted. For instance, a viewer might misinterpret 
an axis value or a reference line as part of the dataset, leading to 
skewed perceptions of values or trends. 

During our survey, this mistake appeared when participants were 
tasked with indicating the value range in the dataset, especially in 
the Area chart where the data mark extends to the bottom of the 
axis, but the actual values are denoted at the top of the area. In these 
situations, many participants bypassed the actual data values and 
answered based on the minimum and maximum labels on the Y-axis 
(Figure 7a). Another instance of this mistake was observed when 
viewers were asked to estimate the average value in the Bubble 
chart, and they highlighted the center of the chart as being the 
average value (Figure 7b). 

4.4.4 E4: Cannot visually estimate a derived value. This bar-
rier arises when viewers are faced with the challenge of deducing a 
value that is not explicitly presented in the visualization, such as an 
average or a noticeable trend among data points. Viewers may be 
hesitant about their estimates or uncertain about the methodology 
to derive the value. In our survey, when faced with questions asking 
for derived values, participants typically provided one of two in-
correct responses. Some expressed their uncertainty by responding 
with ’I’m not sure’, indicating confusion about visually estimating 
an average. Others responded with ’Impossible to Answer with this 
Visualization’, suggesting the data presented did not allow for an 
accurate estimation. 

4.5 Decoding Barriers: Reading the 
Visualization 

Decoding a visualization involves a viewer’s ability to correctly ex-
tract the information presented through visual channels. Decoding 
barriers arise when viewers encounter difculties in reading of 
information from the visualization, and are all examples of opera-
tional barriers. Common mistakes include misreading data values, 
referencing the wrong axis or dimension, or misinterpreting the vi-
sual channels such as colors, sizes, or shapes. For instance, a viewer 
might misalign a data point with its corresponding axis value, lead-
ing to inaccurate conclusions. Similarly, misconstruing the visual 
channels can result in a viewer associating a color with the wrong 
category or mistaking the size of a visual element for a diferent 
data dimension than intended. Decoding barriers can either stem 
from misconceptions at earlier stages of the process, or happen in 
isolation as a result of misattention. Decoding barriers can fall into 
one of three categories: 

• D1: Reads wrong data element 
• D2: Reads wrong visual channel 
• D3: Reads wrong value of of axis or colormap 

4.5.1 D1: Reads wrong data element. Reading of the wrong 
data element within a visualization often traces back to earlier bar-
riers barriers: (1) a fawed mental representation of the visualization 
- E1: Misunderstanding the visual encodings (See Figure 5a for exam-
ple), (2) a misreading of axes, common in histograms or time series 
- E2: Misinterprets the axis or colormap, or (3) misunderstanding or 
misreading the primary query, as captured by the two translation 
barriers T1: Misunderstanding the question (See Figure 4a for exam-
ple) and T2: Misreading the question (See Figure 4b for example). For 
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“I extracted the upper and lower range of the chart”

What was the range of the price of 
a pound of coffee beans between 
January 2018 and January 2020?

Determine Range

Wrong AnswerX Wrong AnswerX

Confounds chart elements  
with data valuesE3

participant answer: 0.5 - 0.8 
correct answer: 0.68- 0.89 

(a) Example of an E3: Confounds chart elements with data values 
mistake. This participant read the min and max values of the 
axis as the min and max values in the dataset. 

“The area I marked is the centre of the chart.  
It represents the average metro system of the world.” 

The average metro system in this 
chart has approximately 300 

stations and is 200km in length. 
True or False?

Find Clusters

Wrong AnswerWrong AnswerX

Confounds chart elements

with data valuesE3

correct answer:  False
participant answer: False

(b) Example of an E3: Confounds chart elements with data values 
mistake. This participant estimated the center of the chart as the 
average value for the data. 

Figure 7: Examples of Encoding Barriers encountered by par-
ticipants in the survey. The sketches portray participant an-
notations, while the pathway on the right of each panel de-
notes the sequence of mistakes made by the participant. 

example, viewers who struggled with interpreting axes (E2 barrier) 
were also inclined to read the wrong data elements in time series 
and histograms. When the foundational conceptual error was a 
translation barrier, categorical visualizations, such as bar charts 
showcasing internet speeds across nations or stacked bars detailing 
room service costs in global cities, were most frequently misread. 

4.5.2 D2: Reads wrong visual channel. In this barrier, viewers 
typically focus on the correct data element but read of the wrong 
visual channel. One frequent mistake is referencing the y-axis in a 
scatterplot when the x-axis references the correct data attribute (or 
vice versa), especially when both have comparable value ranges. 
A more pronounced instance of this type of mistake involves in-
terpreting an entirely diferent visual channel, like size, when the 
question pertains to length or position. 
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This error, much like the D1 barrier where the wrong data el-
ement is read, can originate from previous conceptual misunder-
standings. However, our survey’s qualitative feedback suggested 
that attention lapses often played a signifcant role in these types 
of mistakes. Case in point, when participants were prompted to 
illustrate their answers on the visualization, many recognized their 
oversight. The act of drawing consistently made participants realize 
their own errors, a theme that prominently emerged in our study, 
which we delve deeper into in Section 6. 

4.5.3 D3: Reads wrong value of of axis or colormap. The 
fnal decoding barrier emerges when viewers correctly identify the 
data element and read the correct visual channel but misread its 
value from the axis, legend, or colormap. This error often stems 
from an earlier encoding barrier, particularly E2: Misinterprets the 
axis or colormap. However, it can also arise from less egregious 
conceptual missteps, like errors in estimation. 

4.6 Unraveling Misconceptions: A Qualitative 
Dive into Participants’ Rationale 

In order to better understand the types of conceptual faws that led 
to poor accuracy in each of the charts, we analyzed the percentage 
of each misconception code, for each chart and task, as presented 
in Figure 8. 

We frst investigate the reasoning for incorrect task completions 
with stacked charts, which exhibited the lowest average accuracy 
of all charts. The most prevalent code in all stacked charts was E1: 
Misunderstood the visual encoding. This conceptual barrier was most 
prevalent for stacked area charts, which often resulted from par-
ticipants interpreting the chart as overlaid areas instead of stacked 
areas. An interesting, albeit incorrect, interpretation of the stacked 
bar charts was that each bar represented the range of possible values 
for that category. So in the case of our dataset, Peanuts in Seoul cost 
between 35 and 42 Dollars (direct quote from one of the participants). 
Other participants simply read the top of the bar, the bottom of the 
bar, or even the middle of the bar as an ’average’ value. Stacked bar 
charts also sufered from the operational decoding barrier D1:Reads 
wrong data element, which is when participants would look at the 
wrong segment or the wrong bar entirely. This is likely due to the 
larger amount of data (10 cities and 5 categories) and the perceptu-
ally more challenging task of isolating a given category across all 
bars. 

Patterns from the qualitative analysis reveal unique mistakes 
associated with certain chart types, such as the Choropleth map, 
Bubble charts, and Pie charts. The Choropleth map had an average 
accuracy of 94% in our study. Yet, for those who made errors, the 
challenges centered on misinterpreting values from the quantized 
colormap (E2:Misinterpreted the Axis/Colormap). Some participants 
struggled with the idea that each color represented a range of 
values, such as 4-6%. They expressed confusion about selecting the 
right ’interval’ from dropdown options, expecting a single value 
representation for each state’s color. 

Meanwhile, Pie charts, with an average accuracy of 90%, pre-
sented one predominant type of error: D3:Reading wrong values 
of of axis. Participants often correctly identifed the relevant pie 
slice but misconstrued the slice’s angle in degrees as its percentage 
value. For instance, a slice taking up a quarter of the pie (or 90 

degrees) was erroneously seen as representing 90% of the sales. 
This mistake underscores an interesting aspect of visualization lit-
eracy: participants might latch onto familiar metrics (like degrees) 
but falter when bridging that understanding to another concept 
(like percentage distribution). This mistake was exclusive to the 
tasks of retrieving values. When asked to identify extremes, partic-
ipants only had to fnd the largest/smallest slice of the pie, which 
did not challenge their ability to decode absolute values from the 
categories. 

The Bubble chart is the only chart in our survey that encodes 3 
data properties instead of 2 (encoded in the x/y position and size of 
the circle mark). The most common misconception with this chart 
type was D2:Read Wrong Visual Channel. For example, participants 
would prioritize the size of the circle over their position along the 
x or y axis. The Bubble chart was also the one with the highest 
percentage of this type of error among all chart types. Analyzing 
the types of mistakes per visualization task (right panel in Figure 8) 
reveals that the two tasks where viewers consistently read of the 
wrong visual channel in the Bubble chart were fnding extremes 
(selecting the largest circle instead of the one on the extremities 
of the axis) as well as making comparisons (selecting the larger of 
two circles instead of the one farther to the right/top on an axis). 

5 CHARTING PERFORMANCE: ACCURACY 
AND TIME METRICS ACROSS VISUAL 
REPRESENTATIONS 

We processed the quantitative data from our survey at two levels 
of granularity: chart-centric and task-centric. We frst evaluated 
the average accuracy and time across each chart type (Figure 9) 
and subsequently delved into task-specifc performance within 
each chart (Table 2). We also performed a time-centric analysis to 
disambiguate the efect of barriers on accuracy and time taken to 
perform a task (Figure 10). 

Chart Specifc Performance Trends. At a high level, the chart-
specifc analysis reveals that participants found the stacked area 
chart the most challenging (average accuracy 47%), while they 
performed best with pie, line, and choropleth charts (average accu-
racies > 90%). Charts with lower accuracy scores typically required 
slightly more time for participants to interpret. Additionally, for 
charts with lower average accuracies, there was often a greater 
distribution of scores amongst tasks (grey markers in Figure 9). 
That is, participants performed a few tasks with the chart very well, 
and others very poorly. We present a more detailed task-centric 
analysis of the results in the section below. 

At the highest end of the performance scale, Line charts, Pie 
charts, and Choropleth maps consistently exhibited a mean accu-
racy of over 90%. This suggests that users typically perform better 
when interpreting more familiar chart types, refected in both their 
accuracy and efciency. Our qualitative analysis of sketches and ra-
tionale for these charts show that mistakes often arise not from the 
inherent complexity of the chart or its design, but primarily from 
participants misinterpreting or misreading the question, leading 
them to extract the incorrect data element from the visualization. 

The three types of charts that participants struggled with the 
most in terms of average accuracy were stacked area charts, area 
charts, and stacked bar charts. Notably, the stacked 100% bar chart 
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Read Wrong Visual Channel
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Figure 8: Distribution of Qualitative Codes for Each Chart and Task Type. This 100% stacked bar chart depicts the frequency 
distribution of qualitative codes identifed across diferent chart types in the study (left panel) and for diferent visualization 
tasks (right panel). Each segment within the bars represents a distinct code, allowing for a comparative analysis of prevalent 
themes and misconceptions associated with each chart. In the left panel, the most prevalent code for each chart is highlighted 
when they account for over 30% of the misconceptions observed for that chart. 

also presented signifcant difculties, ranking as the ffth most 
challenging for participants to interpret. This suggests that visu-
alizations that layer data, especially in a stacked format, can be 
particularly tricky for users to decode, potentially due to the overlap-
ping elements and compounded data representations. Our analysis 
of the qualitative data confrms this and suggests that participants 
often do not understand the visual encodings in stacked charts. The 
single task on which participants performed worst was retrieving 
values from the stacked area chart, with an average accuracy of 
10% (Table 2). 

Ultimately, stacked charts, while visually appealing and efective 
for conveying cumulative totals, can pose signifcant challenges in 
interpretation, especially when readers aim to compare individual 
segments within the bar or across bars. The challenge participants 
encountered was trying to compare the sizes of segments that were 
not aligned to a common baseline. Additionally, stacked charts that 
displayed multiple categories (such as the stacked bars with 8 cities 
and 5 categories) led to an even higher incidence of mistakes. 

The Efect of Barriers on Task Completion Time. We also 
investigated how participants who answered tasks correctly com-
pared to those who did not in terms of time to complete the task. 
That is, do barriers to visual literacy tend to increase the time a 

participant spends on performing the task? Our results show that 
yes, for 10 of the 14 charts, incorrect tasks took longer than correct 
ones (Figure 10). Charts where the correct task completion took 
longer included the bar chart, the stacked bar chart 100, the bubble 
chart, and the stacked bar chart. The average diference in time 
between correct and incorrect tasks varied by chart, from less than 
2 seconds for the stacked area chart tasks up to over 25 seconds for 
the bubble chart tasks. 

One notable trend is that for the more challenging charts (lower 
overall accuracy, right side of Figure 10), the time diference be-
tween people who got the tasks correct and incorrect tends to be 
small. That is, participants who got it wrong were only a little 
slower than those who got it right. Conversely, in ‘simpler’ charts 
(high average accuracy, left side of Figure 10), the average diference 
between the two groups tends to be higher. Participants who got 
the tasks wrong in the simple charts took up to 20 seconds longer 
than those who got it right. While the absolute number of people 
who got tasks wrong for simple charts is much smaller (size of red 
circles in Figure 10), those who did took much longer to answer. 

There are a few exceptions to this trend, mostly within the more 
challenging charts, where the slower participants were those who 
answered correctly. A particularly egregious example is the bubble 
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Figure 9: Task Performance Analysis by Chart. The left panel illustrates mean task accuracy, while the right showcases the time 
taken. Red circles denote overall mean accuracy across all tasks, while grey circles represent mean accuracy for individual tasks 
within each chart. Bars indicate a 95% confdence interval. Chart types are organized based on their overall mean accuracy. 

chart, where participants who got the tasks correct took an average 
of 25 seconds longer. A closer analysis of this data broken down 
by task reveals that this diference is mostly driven by the task 
where participants were asked to compare an attribute for two 
cities (BuCQ3, Table 2). To be performed correctly, this question 
required close attention to the fact that the attribute in question was 
encoded in size, and not in either axis. Analysis of barriers for the 
Bubble Chart shows that D2:Reads the wrong visual channel was the 
most common barrier encountered when participants completed 
the task incorrectly (Figure 8). We hypothesize that participants 
who answered the question correctly took the time to analyze 
all visual channels and decode the correct one. Two other, less 
stark, examples of this same pattern are the two stacked bar charts 
(standard and 100%), where participants who performed the tasks 
correctly took on average 5 and 9 seconds longer than those who 
did not, respectively. Given the complexity and oftentimes novelty 
of stacked bar charts, we hypothesize that participants who took 
the time to understand the encoding tended to take a few seconds 
longer and complete the task accurately. 

Task-Centric Analysis of Performance. We also adopted an 
orthogonal analysis method, categorizing questions based on the 
visualization tasks they encompassed, such as value retrieval and 
comparison. Consider the task of identifying clusters, presented 
to participants using both a scatterplot (with a mean accuracy 
of 0.87) and a bubble chart (with a mean accuracy of 0.38). The 
pronounced disparity in performance between the scatter plot and 
the bubble chart implies that the additional visual channel of size 
in the bubble chart can be a source of confusion. This observation 
was supported in the qualitative data, where some participants 
ascribed exaggerated signifcance to larger circles, skewing their 
interpretation. 

Another interesting juxtaposition in performance for the same 
task relates to making comparisons. The stacked area chart had 
the poorest performance for this task, registering an average ac-
curacy of 13% and 21% for the two tasks of this type. This is likely 
attributed to the inherent challenge of comparing data points with 
varied baselines. In contrast, the stacked bar chart, which poses a 
similar encoding challenge, performed relatively better, achieving 
an average accuracy of 48% and 67% in the comparison tasks. The 
qualitative feedback from participants suggests that the continuous 
presentation of data in the stacked area chart led many viewers to 
mistakenly assume that all categories started from a baseline of 0, 
rather than the peak of the preceding category. 

The quantitative data from the survey provided a foundational 
understanding of which chart types and tasks posed greater dif-
fculties for participants. Meanwhile, the qualitative analysis of 
participants’ sketches and textual feedback, discussed in the pre-
vious section, provided rich insight into the underlying cognitive 
barriers and misconceptions leading to these performance dispari-
ties. 

Participant-Centric Analysis. Among the demographic infor-
mation collected from participants was their self-reported level 
of familiarity with visualizations, which ranged from ‘no familiar-
ity’ to ‘expert’. The number of participants in each group can be 
seen in Table 1. We conducted an analysis of overall participant 
performance on the VLAT as a function of their familiarity with 
visualizations as well as the frequency of each type of barrier in 
the diferent groups (Table 1). From an accuracy standpoint, aver-
age VLAT scores increased with increasing visualization literacy. 
More specifcally, relatively skilled and expert participants scored 
an average of 80% compared to 68% for participants with no fa-
miliarity with visualizations. In the analysis of barriers for each 
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group, the frequency of translation errors (orange bars in Table 1 
decreased steadily as familiarity with visualizations increased. This 
suggests that the ability to translate an analytic task to a visual one 
is skill that is inherent to increased visualization literacy. Another 
noteworthy pattern in the data was that for all groups (except for 
expert, which had only 1 participant), the most common type of bar-
rier encountered was E1:Misunderstood the visual encoding. This 
fnding accentuates the need to weave visualization education into 
mainstream curricula and broaden the general public’s familiarity 
with diverse chart formats. We discuss this in more detail in the 
following section. 

6 DISCUSSION 
As we chart the challenges to visualization literacy, we fnd that 
several barriers can impede accurate interpretation and understand-
ing of the underlying data. Here, we refect on these barriers, their 
intersection with related eforts in visualization, and implications 
for future work in the feld of visualization education. 

Intersection of Barriers in Existing Work. This work outlined 
the three main types of barriers that can occur when a viewer ex-
tracts incorrect or no information from a visualization. Existing 
work in the feld of visualization has often encountered one or 
more of these barriers, to varying degrees of granularity, scope, and 
rigor. For example, Grammel et al. [21] investigated how novices 
build visualizations and found three major barriers faced by the 
participants: (1) translating the task into data attributes (similar to 
our translation barrier), designing visual mappings (closely related 
to encoding barriers when reading a visualization) and interpret-
ing visualizations (a higher level category that encapsulates our 
decoding barriers). Participants in their study were tasked to create 
visualizations and, therefore, had to employ a diferent set of skills 
than when reading a visualization. Nevertheless, the overlap in 
the types of barriers encountered suggests that education eforts 

that address viewers’ ability to translate, encode, and decode are a 
valuable contribution to the feld. 

Other eforts investigated barriers to visualization for specifc vi-
sualization types ([2, 17, 29]). For parallel coordinates, for example, 
Peebles et al. [29] found two main barriers: (1) a lack of under-
standing of coordinate systems and (2) visual complications from 
crossing lines and clutter. We can draw a parallel between their 
frst barrier and our concept of encoding barriers, which encom-
pass difculties in understanding the layout. Their second barrier 
is particularly interesting in that it provides a diferent precursor 
to decoding barriers than the ones observed in our study. The de-
coding errors observed in our study mostly stemmed from either 
inattention or a prior misconception of how the data was encoded. 
The issue of visual clutter identifed by Peebles et al. serves as an 
example of the broader category of perceptual aspects, which can 
often lead to decoding errors. Understanding the factors, whether in 
the visualization or in the viewer, that lead to the diferent barriers 
is critical in providing the appropriate educational intervention. 

In investigating what triggered specifc barriers in our dataset, 
we observed that participants are often susceptible to more than 
one barrier, with a frst misconception often triggering a second 
or third barrier during analysis. More specifcally, we observe that 
mistakes early in the visual analysis process, such as misinterpreting 
colors, sizes, or the layout, often cascade into subsequent stages 
of data interpretation, such as decoding data values. Educational 
interventions can address many of the conceptual barriers we have 
identifed at their root. 

Mitigating Barriers through Visualization Education. In a re-
cent overview of challenges and opportunities in data visualization 
education, Bach et al. [5] highlight the need to improve visualiza-
tion literacy through diferent educational approaches. Our work 
can provide guidance on the types of barriers that these eforts can 
target. For example, educational approaches that target encoding 
barriers can provide guidance for viewers on how to interpret a 
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Visualization Familiarity Average VLAT Score Frequency of Visualization Barriers 

No familiarity (5) 0.680 

Beginner (35) 0.693 

Moderately knowledgeable (56) 0.709 

Relatively Skilled (25) 0.803 

Expert (1) 0.800 

Table 1: Table summarizing performance metrics and the occurence of visualization barriers across diferent self-reported 
familiarity with visualization. For each group, the number in parenthesis indicates how many participants self-reported into 
that category. Frequencies of barriers span 0 to 100%. 

visual channel. Decoding barriers might be minimized by the efec-
tive use of annotations. A more active approach to address barriers 
might walk a viewer from the data to visual encoding in a simpli-
fed example, followed by exercises for the user to gain hands-on 
experience. 

A promising avenue for learning, both in the feld of visualiza-
tion and elsewhere, is active learning [34]. By allowing users to 
engage directly with visual elements and receive immediate feed-
back, it becomes possible to correct misconceptions in real-time. 
Active learning has been successfully applied in targeted eforts 
at enhancing visualization literacy across diferent settings and 
for diferent target ages [6, 12, 23]. Interactivity, especially in the 
realm of visualization literacy, provides users with a tangible and 
immediate connection to abstract data, enabling a more hands-on 
learning experience. This type of learning can be particularly useful 
for addressing encoding barriers, as it helps viewers better under-
stand the underlying relationship between the data and the visual 
channels. Moreover, as they manipulate the visual elements, users 
can validate or challenge their initial understandings, allowing for 
a continuous learning process. Integrating tutorials or prompts that 
guide users in this exploration can further streamline the learning 
curve, ensuring that they not only view data but also understand the 
underlying patterns and narratives. As visualization tools evolve, 
the seamless incorporation of these interactive features will un-
doubtedly play a pivotal role in bridging the gap between complex 
data and its interpretation. 

A particular type of active learning that has proven useful in the 
feld of education is sketching [1, 24]. Interestingly, the qualitative 

analysis of the survey results revealed a pattern around partici-
pants’ self-realization of errors when they were prompted to sketch 
directly on the visualization. Specifcally, in 39 instances (i.e., 8% 
of incorrect responses), participants initially provided an incorrect 
answer. However, when asked to elucidate their thinking process 
by drawing on the visualization, they identifed the error in their 
initial assessment. These instances happened for both operational 
decoding barriers (i.e., reading the wrong data value) as well as 
for conceptual encoding barriers, where drawing on the visual-
ization helped them understand the encoding. For example, one 
participant said: "When I drew the lines, I noticed that I answered 
the wrong month. So l realized that I was confused by the way the 
months were organized". This result aligns with earlier research that 
has explored the value of sketching as a way of prompting refec-
tion [1, 24]. Our results underscore the pivotal role of sketching in 
pinpointing conceptual missteps. 

Ultimately, our study outlines the multifaceted nature of barri-
ers in visualization literacy, and we emphasize the critical role of 
targeted education in overcoming these challenges. Our fndings 
provide support for an educational approach that combines theoret-
ical understanding with practical, hands-on experiences like active 
learning and sketching. These methods not only aid in clarifying 
concepts but also foster a deeper engagement with the material, 
allowing learners to internalize and apply their knowledge more 
efectively. 
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Visualization Task ID Vis Task Time (s) Acc (%) Accuracy Summary 
Area chart ACQ1 retrieve value 46 71 

ACQ2 fnd extremum 60 62 
ACQ3 determine range 83 38 
ACQ4 fnd correlations/trends 57 33 

Area chart 2 AC2Q4 fnd correlations/trends 45 86 
AC2Q2 fnd extremum 31 86 
AC2Q1 retrieve value 40 71 
AC2Q3 determine range 59 67 

Bar chart BCQ4 make comparisons 37 95 
BCQ3 determine range 40 78 

Bubble Chart BuCQ3 make comparisons 158 93 
BuCQ6 fnd extremum 29 82 
BuCQ4 fnd correlations/trends 42 68 
BuCQ2 determine range 51 45 
BuCQ5 fnd clusters 57 38 

Choropleth chart CCQ1 fnd extremum 24 100 
CCQ2 retrieve value 33 87 

Histogram Chart HCQ3 fnd extremum 30 95 
HCQ2 make comparisons 34 90 
HCQ1 retrieve value 63 71 

Histogram Chart 2 HC2Q2 make comparisons 28 85 
HC2Q3 fnd extremum 26 80 
HC2Q1 retrieve value 60 60 

Line chart LCQ2 fnd extremum 16 100 
LCQ1 retrieve value 27 98 
LCQ4 fnd correlations/trends 31 93 
LCQ3 determine range 51 90 
LCQ5 make comparisons 50 78 

Pie chart PCQ2 fnd extremum 22 95 
PCQ1 retrieve value 29 85 

Scatter Plot SPQ1 retrieve value 34 97 
SPQ2 fnd extremum 42 89 
SPQ4 fnd clusters 44 87 
SPQ3 determine range 48 68 
SPQ5 fnd correlations/trends 40 55 

Stacked area SAQ4 fnd correlations/trends 49 97 
SAQ3 fnd extremum 32 92 
SAQ2 make comparisons 45 21 
SAQ5 make comparisons 33 13 
SAQ1 retrieve value 40 10 

Stacked Bar SBQ4 make comparisons 78 67 
SBQ2 fnd extremum 32 57 
SBQ1 retrieve value 78 52 
SBQ3 make comparisons 41 48 
SBQ5 retrieve value 47 33 

Stacked Bar 100 SB100Q2 make comparisons 30 93 
SB100Q1 retrieve value 36 78 
SB100Q3 fnd extremum 31 40 

TreeMap TMQ3 identify hierarchical structure 17 100 
TMQ1 fnd extremum 36 95 
TMQ2 make comparisons 36 71 

Table 2: Table summarizing performance metrics across diferent chart types. Columns detail the chart name, Task ID, specifc 
visualization task addressed, average response time in seconds, average accuracy as a percentage, and an embedded chart 
visualizing accuracy rates for each chart type, color-coded by visualization task. For each chart, tasks are sorted from highest to 
lowest accuracy 
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7 CONCLUSIONS AND FUTURE WORK 
In this study, we conducted an in-depth exploration of the barriers 
to visualization literacy, with an emphasis on understanding the 
underlying conceptual challenges. Drawing from the extensive qual-
itative data collected in our survey, our fndings shed light on the 
specifc misconceptions and difculties individuals face across vari-
ous visualization types. Our work further delves into the unique bar-
riers associated with 12 diferent chart types, providing an overview 
of the nuances in comprehension. Through our research, we have 
developed a classifcation system that outlines the conceptual and 
operational barriers individuals encounter throughout the visual-
ization interpretation process. A complementary fnding was the 
role of sketching in fostering visualization literacy, exemplifed by 
instances where participants’ self-correction was prompted by their 
own sketches. Our fndings not only contribute to the existing body 
of knowledge but also suggest potential avenues for improving 
visualization design and education. 

Future research should continue to explore these barriers across 
diverse contexts, populations, and visualization types. We see our 
study as an initial step, paving the way for more in-depth research 
aimed at enhancing visualization literacy. Our classifcation, we 
believe, lays the groundwork for developing more efective methods 
to teach visualization literacy. A comprehensive understanding of 
the prevalent barriers and their underlying causes will enable the 
creation of more targeted interactive tutorials that address these 
common misconceptions. Looking ahead, there is potential for the 
development of dynamic systems that can proactively assist by 
detecting user misconceptions through their interactions. 

In this work, we use specifc analytic tasks, as captured by the 
VLAT, to investigate barriers to understanding. We take this ap-
proach to more easily isolate instances of misunderstandings by 
tracking incorrect task completions. However, real-world analysis 
can also have a more exploratory nature, where viewers are not 
trying to perform a specifc task. Future work can explore the types 
of barriers that viewers can face in these settings as well, and how 
they overlap with the ones identifed in this study. Additionally, to 
reduce survey fatigue for our participants, we designed the study 
to only ask for rationale and sketches from participants who per-
form a task incorrectly. However, future versions of this work that 
also capture sketches and rationale from correct task completions 
can provide rich insight into diferent strategies both within and 
across participants for correct answers. Future surveys can also 
analyze how participants perform on tasks with diference levels of 
difculty and discrimination, as described by CTT (Classical Test 
Theory) and IRT (Item Response Theory). 

An additional avenue for future work is eye-tracking studies, 
which can provide valuable insight for understanding mental mod-
els in visualization literacy. Related work in this area has looked at 
how eye movements can reveal cognitive processes [38] as well as 
uncovered the impact of design choices in visualizations, such as 
the choice of using linear or log scales [20]. By monitoring where 
and for how long individuals gaze at particular elements of a visu-
alization, future work can gain insight into the cognitive processes 
and strategies users employ when interpreting visual data. Such 
studies can reveal the sequence in which information is processed, 
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areas of confusion or misinterpretation, and the elements that cap-
ture users’ attention the most. When integrated with other research 
methods, eye-tracking can provide a detailed picture of the underly-
ing mental models that drive users’ interactions with visualizations 
and shed light on areas where intervention or redesign might be 
benefcial. 

As we navigate an age replete with data, ensuring that individ-
uals can accurately interpret visual representations is crucial. By 
understanding and addressing the barriers to visualization liter-
acy, we pave the way for more informed decisions and a deeper 
appreciation of the stories that data can tell. 
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